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Abstract
A time-dependent many-body theory for many-particle systems is formulated
using the functional Schrödinger picture. Taking a Gaussian trial wave
functional and using the variational principle, the equations of motion are
obtained. The equations of motion are solved in the small oscillation regime to
yield the generalized RPA results. The electron–hole excitation, the collective
plasma oscillation for the paramagnetic state, the Stoner excitation and the spin
wave for the ferromagnetic state are derived and discussed. As a further test
on the versatility of the present method, the formalism is applied to the bound
states of the exciton problem and shown to yield the governing equation in a
straightforward manner.

PACS numbers: 05.30.−d, 04.20.Fy, 11.10.−z

1. Introduction

The time-dependent variational method has been shown to be a promising scheme to
investigate problems beyond the mean field in field theories [1, 2]. Also, it is shown that
the Schrödinger picture coupled with the variational principle offers a convenient mean in
obtaining nonperturbative information from various quantum field theories [3–5]. Recently,
there has been some interest in the application of the Schrödinger picture to many-body
phenomena [6, 7] in which the functional Schrödinger picture (FSP) has been successfully
applied to the interacting electron–gas system and the BCS superconductivity at both zero
and finite temperatures to obtain the Hartree–Fock results. However, it appears that the time-
independent variational method using a Gaussian trial wave functional does not go beyond
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the mean field results, unless more elaborate schemes coupling variational and perturbation
methods are employed [8–10]. Another important direction of the theory to be explored is
the dynamic aspect of the theory, which is expected to provide dynamic and higher-order
information of the system [2]. One example of such an effort is the coupled cluster method
(CCM) developed earlier and applied to correlated interacting systems [11]. The CCM was
generalized into a full dynamical theory for time-dependent properties by allowing the CCM
amplitudes to depend on time and imposing the time-dependent Schrödinger equation [12].
However, we note that the present method does not employ correlated ground state as in the
CCM. Instead we directly use the time-dependent Lagrangian formalism to obtain the time-
dependent set of equations. We show that this formalism leads into a novel parametrization
of the problem, which can be utilized to solve the correlated interacting systems.

2. A time-dependent formulation of the FSP method

In this paper, we present a time-dependent FSP formulation of many-particle systems which
leads to the generalized RPA results for the interacting electron–gas system.

For a time-dependent quantum system, the effective action functional is given by

S =
∫

dt L(t) (1)

with the effective Lagrangian,

L(t) = 〈ψ, t|
[

i
δ

δt
− Ĥ

]
|ψ, t〉. (2)

Here, |ψ, t〉 is the quantum state of the system and Ĥ is the Hamiltonian of the model. For
the interacting electron–gas system, the Hamiltonian is

Ĥ =
∑
α

∫
d3x ψ̂

†
α(�x)

[
− h̄2

2m
∇2

]
ψ̂α(�x)

+
1

2

∑
α,β

∫
d3x d3y V (�x, �y)ψ̂ †

α(�x)ψ̂
†
β(�y)ψ̂β(�y)ψ̂α(�x)

≡
∑
A,B

hABψ̂
†
Aψ̂B +

1

2

∑
A,B

VABψ̂
†
Aψ̂

†
Bψ̂Bψ̂A. (3)

Here, the last line was introduced for notational convenience. In order to compute S, we need
a trial wave functional describing the system. In the Floreanini–Jackiw formalism [13], the

action of the operators ψ̂
†

and ψ̂ is realized, respectively, by

ψ̂
†
A|ψ, t〉 −→ 1√

2

[
u
†
A +

δ

δuA

]
�[u, u†, t]

(4)

ψ̂A|ψ, t〉 −→ 1√
2

[
uA +

δ

δu
†
A

]
�[u, u†, t].

As an approximation, we take a Gaussian trial wave functional

�[u, u†, t] = eu
†Gu. (5)

Its dual becomes

�̄[u, u†, t] = 1

Det [G + Ḡ]
eu

†Ḡu (6)
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where Ḡ = [G†]−1. Using the relation

〈ψ, t|i δ
δt

|ψ, t〉 =
∫

DuDu†�̄[u, u†, t] i
δ

δt
�[u, u†, t] =

∑
A,B

iĠAB�BA (7)

where � = [G + Ḡ]−1, one obtains the following expression for the action:

S =
∫

dt

[∑
A,B

iĠAB�BA −H

]
(8)

where

H = 〈ψ, t|Ĥ |ψ, t〉. (9)

The canonical nature of the variational parameters G and i� leads to the Hamiltonian
equations,

iĠAB = δH

δ�BA

(10)

i�̇AB = − δH

δGBA

. (11)

The effective Hamiltonian defined by equation (9) can be expressed in terms of G and� using
equations (3) and (7). After applying some algebra, one obtains

H = 1

2

∑
A,B

hAB�BA +
1

8

∑
A,B

VAB�AA�BB − 1

8

∑
A,B

VAB�AB�BA (12)

where

� = I + G + � + G� −�G−G�G (13)

and I represents the identity matrix. One obtains full equations of motion by using equations
(10) and (11). The procedure leading to equation (10)–(13) is completely general. Therefore,
we can obtain the corresponding Hamiltonian equation and the parametrized Hamiltonian
for any physical Hamiltonian. One such example is the superconductivity channel which is
obtained from equation (3). We can readily obtain the corresponding Hamiltonian and exact
solution in this case [15]. But due to the complicated nature of the equations, explicit analytic
solutions cannot be obtained in general.

3. The small oscillation approximation

It is known that small time-dependent Hartree–Fock fluctuation around the Hartree–Fock
ground state yields the RPA results [2, 14]. Here, we show that the present formalism allows
one to obtain the generalized RPA results. We introduce small fluctuations,

G(t) = Ḡ + δG(t) �(t) = �̄ + δ�(t) (14)

where Ḡ and �̄ are the static ground state values. Using the above assumptions, the
Hamiltonian can be written as follows:

H = H(0) + H ′ (15)

where

H(0) = 1

2

∑
A,B

hAB�̄BA +
1

8

∑
A,B

VAB [�̄AA�̄BB − �̄AB�̄BA] (16)
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H ′ = 1

2

∑
A,B

hABδ�BA +
1

4

∑
A,B

VAB [�̄AAδ�BB − �̄ABδ�BA]

+
1

8

∑
A,B

VAB [δ�AAδ�BB − δ�ABδ�BA] (17)

and

δ� = δ�(1) + δ�(2) = δG + δG�̄ − �̄δG− δG�̄ Ḡ− Ḡ �̄δG + δ� + Ḡδ� − δ�Ḡ

− Ḡδ�Ḡ + δGδ� − δ�δG− δGδ�Ḡ− Ḡδ�δG− δG�̄δG. (18)

In equation (18), δ� is expressed up to the second order which is sufficient to investigate the
linear response. If one is interested in non-linear dynamics, one should include the third-order
term as follows:

δ�(3) = −δGδ�δG. (19)

When this term is included in the Hamiltonian, it is not possible to solve the equations
analytically and, thus, one should resort to numerical calculations. Another way of calculating
higher order terms is using a variational perturbation theory or the CCM [9–12]. One notes
that H (0) does not contain any time-dependent term and, thus, represents the total energy of
the system in the static Hartree–Fock approximation. Using equations (10), (11) and (17), one
can obtain the following linear equations of motion in the momentum space:

iδĠαβ( �p + �q, �p, t) = Aαβ( �p + �q, �p)ωαβ( �p + �q, �p)δGαβ( �p + �q, �p, t)
+

1

2
V ( �q)δαβ

∑
γ

∫
dK δ�γγ (�k, �k − �q, t)

− 1

2
[1 + A + B]αβ( �p + �q, �p, t)

∫
dK V (�k − �p)δ�αβ(�k, �k − �q, t) (20)

iδ�̇αβ( �p + �q, �p, t) = Bαβ( �p + �q, �p)ωαβ( �p + �q, �p)δ�αβ( �p + �q, �p, t)
+

1

4
[A− B]αβ( �p + �q, �p)ωαβ( �p + �q, �p)δGαβ( �p + �q, �p, t)

− 1

4
[A− B]αβ( �p + �q, �p)

∫
dK V (�k − �p)δ�αβ(�k, �k − �q, t) (21)

where

dK = d3k

(2π3)
ωαβ( �p + �q, �p) = εα( �p + �q)− εβ( �p)

εα( �p) = h̄2p2

2m
+ nV (0)−

∫
dK ′ V ( �p − �k′

)θ(kFα − k′) (22)

Aαβ( �p + �q, �p) = θ(| �p + �q| − kFα)θ(kFβ − p)

Bαβ( �p + �q, �p) = θ(kFα − | �p + �q|)θ(p − kFβ)

and

δ� = (A− B)δG + 4Bδ�. (23)

The expression of the effective Hamiltonian allows one to write δ� as follows:

δ�αβ( �p + �q, �p) = 〈ψ̂ †
α( �p + �q)ψ̂β( �p)〉 − �̄αβ( �p + �q, �p). (24)

The above equation shows that the diagonal part of δ� represents the number fluctuation
and the off-diagonal part spin fluctuation. Therefore, it is more convenient and physically
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transparent to express the equations of motion in terms of δ� than δG or δ�. Using equations
(20), (21) and (23), one readily obtains

iδ�̇αβ( �p + �q, �p, t) = ωαβ( �p + �q, �p)δ�αβ( �p + �q, �p, t)
+

1

2
[A− B]αβ( �p + �q, �p)V ( �q)δαβ

∑
γ

∫
dK δ�γγ (�k, �k − �q, t)

− [A− B]αβ( �p + �q, �p)
∫

dK V (�k − �p)δ�αβ(�k, �k − �q, t). (25)

This equation provides a formal basis to discuss physical properties of the electron gas.
First, we consider the diagonal parts of δ� which represents the paramagnetic case and define
the diagonal part as follows:

δ�αα = δρ. (26)

Using this expression, we obtain

iδρ̇( �p + �q, �p, t) = ωαα( �p + �q, �p)δρ( �p + �q, �p, t)
+ [A− B]αα( �p + �q, �p)V ( �q)

∫
dK δρ(�k, �k − �q, t)

− [A− B]αα( �p + �q, �p)
∫

dK V (�k − �p)δρ(�k, �k − �q, t). (27)

The above equation is known as the generalized,or extended RPA, which contains the exchange
terms in the particle–hole excitation energy ωαα [16].

4. Physical properties of the electron gas and application to the exciton problem

Although substantially simplified, it is still impossible to solve the above equation analytically.
Neglecting the exchange contribution, one obtains the well-known RPA result,

iδρ̇( �p + �q, �p, t) = ω
ph

0 ( �p + �q, �p)δρ( �p + �q, �p, t)
+ [A− B]( �p + �q, �p)V ( �q)

∫
dK δρ(�k, �k − �q, t) (28)

where ω
ph

0 ( �p + �q, �p) = ε0( �p + �q) − ε0( �p) is the particle–hole excitation energy for the
non-interacting system. Assuming a solution

δρ( �p + �q, �p, t) = δρ(0)( �p, �q)e−iωq t (29)

one obtains

ωqδρ
(0)( �p + �q, �p) = ω

ph

0 ( �p + �q, �p)δρ(0)( �p + �q, �p)
+ [A− B]( �p + �q, �p)V ( �q)

∫
dK δρ(0)(�k, �k − �q). (30)

It is convenient to rewrite the above equation as an integral equation,

δρ(0)(p̄′, �p, �q;ωq) = γ δ( �p − p̄′) + Gph

0 ( �p, �q;ωq)V ( �q)
∫

dK δρ(0)(p̄′, �k, �q;ωq) (31)

where γ stands for a phase factor to keep δρ(0) real. The particle–hole Green’s function for
the non-interacting system G

ph

0 is defined as follows:

G
ph

0 ( �p, �q;ωq) = A

ωq − ω
ph

0 + iη
− B

ωq − ω
ph

0 − iη
. (32)
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Then,
∫

dK δρ(0)(�k, �q) can be found by integrating equation (31) with respect to �p,∫
dK δρ(0)(�k, �q) = γ

1 − V ( �q)D0( �q;ωq) (33)

where the polarization function is defined by

D0( �q;ωq) =
∫

d3p

(2π)3
G
ph

0 ( �p, �q;ωq). (34)

Substituting equation (33) back into equation (31) yields

δρ(0)(p̄′, �p, �q;ωq) = γ

[
δ( �p − p̄′) +

G
ph

0 ( �p, �q;ωq)Vq
1 − VqD0( �q;ωq)

]
. (35)

Since the poles of δρ(0) give the excited states of the system, the excited states in the RPA
occur at ωq such that

1 = VqD0( �q;ωq). (36)

The above result is the well-known RPA dispersion relation for the collective modes of an
interacting fermion system [2].

Next, we consider the off-diagonal part of δ�, which represents the magnetic excitations,

δ�↑↓ = δ�
†
↓↑ = δσ. (37)

Substituting this expression into equation (25), one obtains

iδσ̇ ( �p + �q, �p, t) = ω↑↓( �p + �q, �p)δσ( �p + �q, �p, t)
+[A− B]↑↓( �p + �q, �p)

∫
dK δV (�k − �p)δσ(�k, �k − �q, t). (38)

One notes that the direct Coulomb term disappears naturally, thus showing that the direct
Coulomb interaction is not related with the ferromagnetic state. Although the above equation
is similar to equation (28), it is not possible to solve it analytically since the exchange
interaction is contained in the integral. We approximate the integration part of the last term of
equation (38) as∫

dK V (�k − �p)δσ(�k, �k − �q, t) ≈ Ṽ ( �q)
∫

dK δσ(�k + �q, �k, t) (39)

using the result of the average theorem of the integration [16]. It is noted that Ṽ ( �q) represents
the average magnitude of the exchange interaction. With this approximation, equation (38)
assumes the same form as equation (28). Following the same steps, we obtain

δσ (0)(p̄′, �p, �q;ωq) = γ

[
δ( �p − p̄′) +

G↑↓( �p, �q;ωq)
1 − ṼqD↑↓( �q;ωq)

]
(40)

where

G↑↓( �p, �q;ωq) = A↑↓
ωq − ω↑↓ + iη

− B↑↓
ωq − ω↑↓ − iη

(41)

D↑↓( �q;ωq) =
∫

d3p

(2π)3
G↑↓( �p, �q;ωq). (42)

The magnetic excitations occur when

1 = Ṽ ( �q)D↑↓( �q;ωq) (43)

is satisfied. The above equations give the Stoner excitation energy modified by the forcing
term and the spin–wave excitation energy [16].
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In the above, we have shown that the present formalism offers a convenient tool to handle
interacting fermion systems. As an another example of the present approach, we now consider
the exciton problem. In this case, the subscripts α and β in equation (25) represent the band
indices. Since spin is not important in treating excitons, equation (25) is transformed as
follows:

iδ�̇cv( �p, �q, t) = [
Ec( �p)− Ev( �q)

]
δ�cv( �p, �q, t)

−
∫

dK V (�k − �p)δ�cv(�k, �k − �p + �q, t) (44)

where c (v) represents the conduction (valence) band. One notes that the direct Coulomb term
disappears naturally. This indicates the importance of the exchange interaction in the exciton
states. In real semiconductors, the complex structures of bands do not allow to solve equation
(44) analytically. Therefore, we approximate the bands as parabolic as follows:

Ec( �p) = h̄2p2

2mc

+ Eg (45a)

Ev( �p) = − h̄2p2

2mv

(45b)

where mc (mv) is the conduction electron (valence hole) effective mass and Eg is the energy
gap. We choose the top of the valence band as zero, so that the bottom of the conduction band
has the energy value of Eg. An effective interaction is taken to be

V (k) = 4πe2

εk2
(46)

where ε is the appropriate dielectric constant. We introduce the total and relative momentum
coordinates, given by �p − �q = �Q′

and ( �p + �q)/2 = �q, respectively. Using these notations we
write the equation of motion in the centre of mass system as follows:

iδ�̇cv( �q, �Q, t) =
[
Ec

(
�q + 1

2
�Q
)

− Ev

(
�q − 1

2
�Q
)]
δ�cv( �q, �Q, t)

−
∫

dK V (�k − �q)δ�cv(�k, �Q, t) (47)

where we have deleted the prime from q̄ ′ for convenience. Using parabolic bands in equation
(45) and the following expression:

δ�cv( �q, �Q, t) = δ�
(0)
Q ( �q)e−iωQt (48)

we obtain

ωQδ�
(0)
Q ( �q) =

[
h̄2q2

2µ
+
h̄2

2

(
1

mc

− 1

mv

)
�q · �Q +

h̄2Q2

8µ

]
δ�

(0)
Q ( �q)

−
∫

dK V (�k − �q)δ�(0)
Q (�k) (49)

where µ is the reduced mass given by 1/µ = 1/mc + 1/mv. Introducing Fourier
transformations as

δ�Q(�k) =
∫

d�r ei�k·�rδ�(0)
Q (�r) (50a)

V (�k − �q) =
∫

d�r ei( �q−�k)·�rV (�r) (50b)

one can obtain the governing equation for the exciton state [17],[
h̄2q2

2µ
− e2

εr
− h̄2

2

(
1

mv

− 1

mc

)
�q · �Q

]
δ�

(0)
Q (�r ) =

[
ωQ − Eg − h̄2Q2

8µ

]
δ�

(0)
Q (�r) (51)
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where �q = −i∇ is now an operator. One can easily transform the above equation for the
hydrogen-like case and obtain the exciton energies for each Q as follows:

ωn(Q) = Eg − µe4

2h̄2ε2n2
+

h̄2Q2

2(mc + mv)
. (52)

5. Conclusion

In summary, a time-dependent functional Schrödinger picture theory of many-particle systems
is presented. We have obtained dynamic equations for physical variables and the generalized
RPA results by expanding around the static Hartree–Fock ground state. Applying the method
to the electron gas, we have obtained excitation spectra for the electron–hole excitation, the
collective plasma oscillation, the Stoner excitation and the spin wave for the ferromagnetic
state. In order to show the convenience and versatility of the present formalism, we have
also applied the method to the exciton problem and obtained the generalized equation for the
excitonic state.
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